Coordination of dual incision and repair synthesis in human nucleotide excision repair.

نویسندگان

  • Lidija Staresincic
  • Adebanke F Fagbemi
  • Jacqueline H Enzlin
  • Audrey M Gourdin
  • Nils Wijgers
  • Isabelle Dunand-Sauthier
  • Giuseppina Giglia-Mari
  • Stuart G Clarkson
  • Wim Vermeulen
  • Orlando D Schärer
چکیده

Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5' to the lesion by ERCC1-XPF and 3' to the lesion by XPG leads to the removal of a lesion-containing oligonucleotide of about 30 nucleotides. The resulting single-stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1-XPF and XPG, we show that the 5' incision by ERCC1-XPF precedes the 3' incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a 'cut-patch-cut-patch' mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible protein phosphorylation modulates nucleotide excision repair of damaged DNA by human cell extracts.

Nucleotide excision repair of DNA in mammalian cells uses more than 20 polypeptides to remove DNA lesions caused by UV light and other mutagens. To investigate whether reversible protein phosphorylation can significantly modulate this repair mechanism we studied the effect of specific inhibitors of Ser/Thr protein phosphatases. The ability of HeLa cell extracts to carry out nucleotide excision ...

متن کامل

Mechanism of open complex and dual incision formation by human nucleotide excision repair factors.

During nucleotide excision repair in human cells, a damaged DNA strand is cleaved by two endonucleases, XPG on the 3' side of the lesion and ERCC1-XPF on the 5' side. These structure-specific enzymes act at junctions between duplex and single-stranded DNA. ATP-dependent formation of an open DNA structure of approximately 25 nt around the adduct precedes this dual incision. We investigated the m...

متن کامل

Replication protein A safeguards genome integrity by controlling NER incision events

Single-stranded DNA gaps that might arise by futile repair processes can lead to mutagenic events and challenge genome integrity. Nucleotide excision repair (NER) is an evolutionarily conserved repair mechanism, essential for removal of helix-distorting DNA lesions. In the currently prevailing model, NER operates through coordinated assembly of repair factors into pre- and post-incision complex...

متن کامل

Initiation of DNA repair mediated by a stalled RNA polymerase IIO.

The transcription-coupled repair (TCR) pathway preferentially repairs DNA damage located in the transcribed strand of an active gene. To gain insight into the coupling mechanism between transcription and repair, we have set up an in vitro system in which we isolate an elongating RNA pol IIO, which is stalled in front of a cisplatin adduct. This immobilized RNA pol IIO is used as 'bait' to seque...

متن کامل

Nucleotide excision repair in rat male germ cells: low level of repair in intact cells contrasts with high dual incision activity in vitro.

The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 28 8  شماره 

صفحات  -

تاریخ انتشار 2009